Lipschitz and uniformly continuous Reducibilities on Ultrametric polish spaces
نویسندگان
چکیده
We analyze the reducibilities induced by, respectively, uniformly continuous, Lipschitz, and nonexpansive functions on arbitrary ultrametric Polish spaces, and determine whether under suitable set-theoretical assumptions the induced degree-structures are well-behaved.
منابع مشابه
Ultrametric Spaces in Continuous Logic
We investigate the continuous model theory of ultrametric spaces of diameter ≤ 1. There is no universal Polish ultrametric space of diameter 1; but there is a Polish ultrametric space, Umax, taking distances in Q∩[0, 1], which is universal for all such Polish ultrametric spaces. We show that in the continuous theory of Umax, nonforking is characterized by a stable independence relation, which i...
متن کاملMinimal bi-Lipschitz embedding dimension of ultrametric spaces
We prove that an ultrametric space can be bi-Lipschitz embedded in R if its metric dimension in Assouad’s sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.
متن کاملRecovering Baire One Functions on Ultrametric Spaces
We find a characterization of those Polish ultrametric spaces on which each Baire one function is first return recoverable. The notion of pseudo-convergence originating in the theory of valuation fields plays a crucial role in the characterization.
متن کاملMarkov type of Alexandrov spaces of nonnegative curvature ∗ †
We prove that Alexandrov spaces X of nonnegative curvature have Markov type 2 in the sense of Ball. As a corollary, any Lipschitz continuous map from a subset of X into a 2-uniformly convex Banach space is extended as a Lipschitz continuous map on the entire space X.
متن کاملUniform Equivalence between Banach Spaces by Israel Aharoni and Joram Lindenstrauss
It is a well-known result of Kadec that every two separable infinite dimensional Banach spaces are homeomorphic. Also in large classes of nonseparable Banach spaces (perhaps all) the density character of a Banach space is its only topological invariant (see the book [2] for details). The situation changes considerably if we consider uniform homeomorphisms. Several results are known which prove ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014